Structure and Evolution of Self–gravitating Objects and the Orthogonal Splitting of the Riemann Tensor

نویسنده

  • L. Herrera
چکیده

The full set of equations governing the structure and the evolution of self–gravitating spherically symmetric dissipative fluids with anisotropic stresses, is written down in terms of five scalar quantities obtained from the orthogonal splitting of the Riemann tensor, in the context of general relativity. It is shown that these scalars are directly related to fundamental properties of the fluid distribution, such as: energy density, energy density inhomogeneity, local anisotropy of pressure, dissipative flux and the active gravitational mass. It is also shown that in the static case, all possible solutions to Einstein equations may be expressed explicitly through these scalars. Some solutions are exhibited to illustrate this point.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local stability criterion for self-gravitating disks in modified gravity

We study local stability of self-gravitating fluid and stellar disk in the context of modified gravity theories which predict a Yukawa-like term in the gravitational potential of a point mass. We investigate the effect of such a Yukawa-like term on the dynamics of self-gravitating disks. More specifically, we investigate the consequences of the presence of this term for the local stability of t...

متن کامل

Gorenstein projective objects in Abelian categories

Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...

متن کامل

Self-similar solutions‎ ‎of the Riemann problem for two-dimensional systems of conservation‎ ‎laws

In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem

متن کامل

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy

In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009